Statistics the Easier Way with R

Author: Nicole M. Radziwill
Publisher:
ISBN: 0692339426
Release Date: 2015-03-21
Genre: Regression analysis

"Designed for beginning and intermediate data scientists, graduate students starting research, undergraduate students taking a first or second applied statistics class, quality improvement professionals, and consultants, this unique book provides an integrated treatment of statistical inference techniques in data analysis. Each example is solved analytically (using equations), and then also in the R software so that readers can see exactly how the computations are performed. Each technique is framed within an easy-to-apply 12-step methodology that will make planning and presenting research a breeze. If you're new to statistics, data science, or R, this book will help get you started. If you have some experience already, this book will make you more productive and enhance your understanding of foundational statistical concepts."--Back cover

Statistical Analysis with R For Dummies

Author: Joseph Schmuller
Publisher: John Wiley & Sons
ISBN: 9781119337096
Release Date: 2017-03-03
Genre: Computers

Understanding the world of R programming and analysis has never been easier Most guides to R, whether books or online, focus on R functions and procedures. But now, thanks to Statistical Analysis with R For Dummies, you have access to a trusted, easy-to-follow guide that focuses on the foundational statistical concepts that R addresses—as well as step-by-step guidance that shows you exactly how to implement them using R programming. People are becoming more aware of R every day as major institutions are adopting it as a standard. Part of its appeal is that it's a free tool that's taking the place of costly statistical software packages that sometimes take an inordinate amount of time to learn. Plus, R enables a user to carry out complex statistical analyses by simply entering a few commands, making sophisticated analyses available and understandable to a wide audience. Statistical Analysis with R For Dummies enables you to perform these analyses and to fully understand their implications and results. Gets you up to speed on the #1 analytics/data science software tool Demonstrates how to easily find, download, and use cutting-edge community-reviewed methods in statistics and predictive modeling Shows you how R offers intel from leading researchers in data science, free of charge Provides information on using R Studio to work with R Get ready to use R to crunch and analyze your data—the fast and easy way!

A Handbook of Statistical Analyses Using R

Author: Torsten Hothorn
Publisher: CRC Press
ISBN: 1420010654
Release Date: 2006-02-17
Genre: Mathematics

R is dynamic, to say the least. More precisely, it is organic, with new functionality and add-on packages appearing constantly. And because of its open-source nature and free availability, R is quickly becoming the software of choice for statistical analysis in a variety of fields. Doing for R what Everitt's other Handbooks have done for S-P

Introductory Statistics with R

Author: Peter Dalgaard
Publisher: Springer Science & Business Media
ISBN: 0387790535
Release Date: 2008-08-15
Genre: Mathematics

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

Discovering Statistics Using R

Author: Andy Field
Publisher: SAGE
ISBN: 9781446289150
Release Date: 2012-03-07
Genre: Reference

Lecturers - request an e-inspection copy of this text or contact your local SAGE representative to discuss your course needs. Watch Andy Field's introductory video to Discovering Statistics Using R Keeping the uniquely humorous and self-deprecating style that has made students across the world fall in love with Andy Field's books, Discovering Statistics Using R takes students on a journey of statistical discovery using R, a free, flexible and dynamically changing software tool for data analysis that is becoming increasingly popular across the social and behavioural sciences throughout the world. The journey begins by explaining basic statistical and research concepts before a guided tour of the R software environment. Next you discover the importance of exploring and graphing data, before moving onto statistical tests that are the foundations of the rest of the book (for example correlation and regression). You will then stride confidently into intermediate level analyses such as ANOVA, before ending your journey with advanced techniques such as MANOVA and multilevel models. Although there is enough theory to help you gain the necessary conceptual understanding of what you're doing, the emphasis is on applying what you learn to playful and real-world examples that should make the experience more fun than you might expect. Like its sister textbooks, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is augmented by a cast of characters to help the reader on their way, together with hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more. Given this book's accessibility, fun spirit, and use of bizarre real-world research it should be essential for anyone wanting to learn about statistics using the freely-available R software.

R Projects For Dummies

Author: Joseph Schmuller
Publisher: John Wiley & Sons
ISBN: 9781119446170
Release Date: 2018-01-18
Genre: Computers

Make the most of R’s extensive toolset R Projects For Dummies offers a unique learn-by-doing approach. You will increase the depth and breadth of your R skillset by completing a wide variety of projects. By using R’s graphics, interactive, and machine learning tools, you’ll learn to apply R’s extensive capabilities in an array of scenarios. The depth of the project experience is unmatched by any other content online or in print. And you just might increase your statistics knowledge along the way, too! R is a free tool, and it’s the basis of a huge amount of work in data science. It's taking the place of costly statistical software that sometimes takes a long time to learn. One reason is that you can use just a few R commands to create sophisticated analyses. Another is that easy-to-learn R graphics enable you make the results of those analyses available to a wide audience. This book will help you sharpen your skills by applying them in the context of projects with R, including dashboards, image processing, data reduction, mapping, and more. Appropriate for R users at all levels Helps R programmers plan and complete their own projects Focuses on R functions and packages Shows how to carry out complex analyses by just entering a few commands If you’re brand new to R or just want to brush up on your skills, R Projects For Dummies will help you complete your projects with ease.

Using R for Data Management Statistical Analysis and Graphics

Author: Nicholas J. Horton
Publisher: CRC Press
ISBN: 1439827567
Release Date: 2010-07-28
Genre: Mathematics

Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsUsing R for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in R, without having to navigate through the extensive, idiosyncratic, and sometimes

Basics of Matrix Algebra for Statistics with R

Author: Nick Fieller
Publisher: CRC Press
ISBN: 9781315360058
Release Date: 2018-09-03
Genre: Mathematics

A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.

Statistics with R

Author: Robert Stinerock
Publisher: SAGE
ISBN: 9781526421470
Release Date: 2018-01-08
Genre: Social Science

The dynamic, student focused textbook provides step-by-step instruction in the use of R and of statistical language as a general research tool. It is ideal for anyone hoping to: Complete an introductory course in statistics Prepare for more advanced statistical courses Gain the transferable analytical skills needed to interpret research from across the social sciences Learn the technical skills needed to present data visually Acquire a basic competence in the use of R. The book provides readers with the conceptual foundation to use applied statistical methods in everyday research. Each statistical method is developed within the context of practical, real-world examples and is supported by carefully developed pedagogy and jargon-free definitions. Theory is introduced as an accessible and adaptable tool and is always contextualized within the pragmatic context of real research projects and definable research questions. Author Robert Stinerock has also created a wide range of online resources, including: R scripts, complete solutions for all exercises, data files for each chapter, video and screen casts, and interactive multiple-choice quizzes.

R Cookbook

Author: Paul Teetor
Publisher: "O'Reilly Media, Inc."
ISBN: 1449307264
Release Date: 2011-03-03
Genre: Computers

With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author

Using R and RStudio for Data Management Statistical Analysis and Graphics

Author: Nicholas J. Horton
Publisher: CRC Press
ISBN: 9781482237375
Release Date: 2015-03-10
Genre: Mathematics

Improve Your Analytical SkillsIncorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book's simple approach easy to understand while more

The Art of R Programming

Author: Norman Matloff
Publisher: No Starch Press
ISBN: 9781593273842
Release Date: 2011
Genre: Computers

A guide to software development using the R programming language covers such topics as closures, recursion, anonymous functions, and debugging techniques.

Circular Statistics in R

Author: Arthur Pewsey
Publisher: Oxford University Press
ISBN: 9780199671137
Release Date: 2013-09-26
Genre: Mathematics

Measurements like mass, length and speed are "linear"; but compass direction or the time of the year are "circular". Circular data have a repeating nature and an arbitrary zero: 12 months after the 1st of July it is the 1st of July again. This book explains how to easily and effectively analyse circular data statistically.