Statistical Methods for Financial Engineering

Author: Bruno Remillard
Publisher: CRC Press
ISBN: 9781439856956
Release Date: 2016-04-19
Genre: Business & Economics

While many financial engineering books are available, the statistical aspects behind the implementation of stochastic models used in the field are often overlooked or restricted to a few well-known cases. Statistical Methods for Financial Engineering guides current and future practitioners on implementing the most useful stochastic models used in financial engineering. After introducing properties of univariate and multivariate models for asset dynamics as well as estimation techniques, the book discusses limits of the Black-Scholes model, statistical tests to verify some of its assumptions, and the challenges of dynamic hedging in discrete time. It then covers the estimation of risk and performance measures, the foundations of spot interest rate modeling, Lévy processes and their financial applications, the properties and parameter estimation of GARCH models, and the importance of dependence models in hedge fund replication and other applications. It concludes with the topic of filtering and its financial applications. This self-contained book offers a basic presentation of stochastic models and addresses issues related to their implementation in the financial industry. Each chapter introduces powerful and practical statistical tools necessary to implement the models. The author not only shows how to estimate parameters efficiently, but he also demonstrates, whenever possible, how to test the validity of the proposed models. Throughout the text, examples using MATLAB® illustrate the application of the techniques to solve real-world financial problems. MATLAB and R programs are available on the author’s website.

Computational Methods in Finance

Author: Ali Hirsa
Publisher: CRC Press
ISBN: 9781466576049
Release Date: 2016-04-19
Genre: Business & Economics

As today’s financial products have become more complex, quantitative analysts, financial engineers, and others in the financial industry now require robust techniques for numerical analysis. Covering advanced quantitative techniques, Computational Methods in Finance explains how to solve complex functional equations through numerical methods. The first part of the book describes pricing methods for numerous derivatives under a variety of models. The book reviews common processes for modeling assets in different markets. It then examines many computational approaches for pricing derivatives. These include transform techniques, such as the fast Fourier transform, the fractional fast Fourier transform, the Fourier-cosine method, and saddlepoint method; the finite difference method for solving PDEs in the diffusion framework and PIDEs in the pure jump framework; and Monte Carlo simulation. The next part focuses on essential steps in real-world derivative pricing. The author discusses how to calibrate model parameters so that model prices are compatible with market prices. He also covers various filtering techniques and their implementations and gives examples of filtering and parameter estimation. Developed from the author’s courses at Columbia University and the Courant Institute of New York University, this self-contained text is designed for graduate students in financial engineering and mathematical finance as well as practitioners in the financial industry. It will help readers accurately price a vast array of derivatives.

Introduction to Statistical Methods for Financial Models

Author: Thomas A Severini
Publisher: CRC Press
ISBN: 9781351981903
Release Date: 2017-07-06
Genre: Business & Economics

This book provides an introduction to the use of statistical concepts and methods to model and analyze financial data. The ten chapters of the book fall naturally into three sections. Chapters 1 to 3 cover some basic concepts of finance, focusing on the properties of returns on an asset. Chapters 4 through 6 cover aspects of portfolio theory and the methods of estimation needed to implement that theory. The remainder of the book, Chapters 7 through 10, discusses several models for financial data, along with the implications of those models for portfolio theory and for understanding the properties of return data. The audience for the book is students majoring in Statistics and Economics as well as in quantitative fields such as Mathematics and Engineering. Readers are assumed to have some background in statistical methods along with courses in multivariate calculus and linear algebra.

Statistics for Finance

Author: Erik Lindström
Publisher: CRC Press
ISBN: 9781498785891
Release Date: 2016-04-08
Genre: Business & Economics

Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students’ financial reasoning skills.

Monte Carlo Simulation with Applications to Finance

Author: Hui Wang
Publisher: CRC Press
ISBN: 9781439858240
Release Date: 2012-05-22
Genre: Business & Economics

Developed from the author’s course on Monte Carlo simulation at Brown University, Monte Carlo Simulation with Applications to Finance provides a self-contained introduction to Monte Carlo methods in financial engineering. It is suitable for advanced undergraduate and graduate students taking a one-semester course or for practitioners in the financial industry. The author first presents the necessary mathematical tools for simulation, arbitrary free option pricing, and the basic implementation of Monte Carlo schemes. He then describes variance reduction techniques, including control variates, stratification, conditioning, importance sampling, and cross-entropy. The text concludes with stochastic calculus and the simulation of diffusion processes. Only requiring some familiarity with probability and statistics, the book keeps much of the mathematics at an informal level and avoids technical measure-theoretic jargon to provide a practical understanding of the basics. It includes a large number of examples as well as MATLAB® coding exercises that are designed in a progressive manner so that no prior experience with MATLAB is needed.

Quantitative Finance

Author: Erik Schlogl
Publisher: CRC Press
ISBN: 9781498785549
Release Date: 2016-04-07
Genre: Mathematics

Quantitative Finance: An Object-Oriented Approach in C++ provides readers with a foundation in the key methods and models of quantitative finance. Keeping the material as self-contained as possible, the author introduces computational finance with a focus on practical implementation in C++. Through an approach based on C++ classes and templates, the text highlights the basic principles common to various methods and models while the algorithmic implementation guides readers to a more thorough, hands-on understanding. By moving beyond a purely theoretical treatment to the actual implementation of the models using C++, readers greatly enhance their career opportunities in the field. The book also helps readers implement models in a trading or research environment. It presents recipes and extensible code building blocks for some of the most widespread methods in risk management and option pricing. Web Resource The author’s website provides fully functional C++ code, including additional C++ source files and examples. Although the code is used to illustrate concepts (not as a finished software product), it nevertheless compiles, runs, and deals with full, rather than toy, problems. The website also includes a suite of practical exercises for each chapter covering a range of difficulty levels and problem complexity.

Nonlinear Option Pricing

Author: Julien Guyon
Publisher: CRC Press
ISBN: 9781466570344
Release Date: 2013-12-19
Genre: Business & Economics

New Tools to Solve Your Option Pricing Problems For nonlinear PDEs encountered in quantitative finance, advanced probabilistic methods are needed to address dimensionality issues. Written by two leaders in quantitative research—including Risk magazine’s 2013 Quant of the Year—Nonlinear Option Pricing compares various numerical methods for solving high-dimensional nonlinear problems arising in option pricing. Designed for practitioners, it is the first authored book to discuss nonlinear Black-Scholes PDEs and compare the efficiency of many different methods. Real-World Solutions for Quantitative Analysts The book helps quants develop both their analytical and numerical expertise. It focuses on general mathematical tools rather than specific financial questions so that readers can easily use the tools to solve their own nonlinear problems. The authors build intuition through numerous real-world examples of numerical implementation. Although the focus is on ideas and numerical examples, the authors introduce relevant mathematical notions and important results and proofs. The book also covers several original approaches, including regression methods and dual methods for pricing chooser options, Monte Carlo approaches for pricing in the uncertain volatility model and the uncertain lapse and mortality model, the Markovian projection method and the particle method for calibrating local stochastic volatility models to market prices of vanilla options with/without stochastic interest rates, the a + bλ technique for building local correlation models that calibrate to market prices of vanilla options on a basket, and a new stochastic representation of nonlinear PDE solutions based on marked branching diffusions.

High Performance Computing in Finance

Author: M. A. H. Dempster
Publisher: CRC Press
ISBN: 9781482299670
Release Date: 2018-02-21
Genre: Computers

High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.

Stochastic Finance

Author: Jan Vecer
Publisher: CRC Press
ISBN: 9781439812525
Release Date: 2011-01-06
Genre: Business & Economics

Unlike much of the existing literature, Stochastic Finance: A Numeraire Approach treats price as a number of units of one asset needed for an acquisition of a unit of another asset instead of expressing prices in dollar terms exclusively. This numeraire approach leads to simpler pricing options for complex products, such as barrier, lookback, quanto, and Asian options. Most of the ideas presented rely on intuition and basic principles, rather than technical computations. The first chapter of the book introduces basic concepts of finance, including price, no arbitrage, portfolio, financial contracts, the First Fundamental Theorem of Asset Pricing, and the change of numeraire formula. Subsequent chapters apply these general principles to three kinds of models: binomial, diffusion, and jump models. The author uses the binomial model to illustrate the relativity of the reference asset. In continuous time, he covers both diffusion and jump models in the evolution of price processes. The book also describes term structure models and numerous options, including European, barrier, lookback, quanto, American, and Asian. Classroom-tested at Columbia University to graduate students, Wall Street professionals, and aspiring quants, this text provides a deep understanding of derivative contracts. It will help a variety of readers from the dynamic world of finance, from practitioners who want to expand their knowledge of stochastic finance, to students who want to succeed as professionals in the field, to academics who want to explore relatively advanced techniques of the numeraire change.

Monte Carlo Methods and Models in Finance and Insurance

Author: Ralf Korn
Publisher: CRC Press
ISBN: 1420076191
Release Date: 2010-02-26
Genre: Mathematics

Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath–Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of stochastic processes with continuous and discontinuous paths. It also covers a wide selection of popular models in finance and insurance, from Black–Scholes to stochastic volatility to interest rate to dynamic mortality. Through its many numerical and graphical illustrations and simple, insightful examples, this book provides a deep understanding of the scope of Monte Carlo methods and their use in various financial situations. The intuitive presentation encourages readers to implement and further develop the simulation methods.

Analysis Geometry and Modeling in Finance

Author: Pierre Henry-Labordère
Publisher: CRC Press
ISBN: 1420087002
Release Date: 2008-09-22
Genre: Mathematics

Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available. Through the problem of option pricing, the author introduces powerful tools and methods, including differential geometry, spectral decomposition, and supersymmetry, and applies these methods to practical problems in finance. He mainly focuses on the calibration and dynamics of implied volatility, which is commonly called smile. The book covers the Black–Scholes, local volatility, and stochastic volatility models, along with the Kolmogorov, Schrödinger, and Bellman–Hamilton–Jacobi equations. Providing both theoretical and numerical results throughout, this book offers new ways of solving financial problems using techniques found in physics and mathematics.

C for Financial Mathematics

Author: John Armstrong
Publisher: CRC Press
ISBN: 9781498750066
Release Date: 2017-01-06
Genre: Business & Economics

If you know a little bit about financial mathematics but don’t yet know a lot about programming, then C++ for Financial Mathematics is for you. C++ is an essential skill for many jobs in quantitative finance, but learning it can be a daunting prospect. This book gathers together everything you need to know to price derivatives in C++ without unnecessary complexities or technicalities. It leads the reader step-by-step from programming novice to writing a sophisticated and flexible financial mathematics library. At every step, each new idea is motivated and illustrated with concrete financial examples. As employers understand, there is more to programming than knowing a computer language. As well as covering the core language features of C++, this book teaches the skills needed to write truly high quality software. These include topics such as unit tests, debugging, design patterns and data structures. The book teaches everything you need to know to solve realistic financial problems in C++. It can be used for self-study or as a textbook for an advanced undergraduate or master’s level course.

Option Valuation

Author: Hugo D. Junghenn
Publisher: CRC Press
ISBN: 9781439889114
Release Date: 2011-11-23
Genre: Business & Economics

Option Valuation: A First Course in Financial Mathematics provides a straightforward introduction to the mathematics and models used in the valuation of financial derivatives. It examines the principles of option pricing in detail via standard binomial and stochastic calculus models. Developing the requisite mathematical background as needed, the text presents an introduction to probability theory and stochastic calculus suitable for undergraduate students in mathematics, economics, and finance. The first nine chapters of the book describe option valuation techniques in discrete time, focusing on the binomial model. The author shows how the binomial model offers a practical method for pricing options using relatively elementary mathematical tools. The binomial model also enables a clear, concrete exposition of fundamental principles of finance, such as arbitrage and hedging, without the distraction of complex mathematical constructs. The remaining chapters illustrate the theory in continuous time, with an emphasis on the more mathematically sophisticated Black-Scholes-Merton model. Largely self-contained, this classroom-tested text offers a sound introduction to applied probability through a mathematical finance perspective. Numerous examples and exercises help students gain expertise with financial calculus methods and increase their general mathematical sophistication. The exercises range from routine applications to spreadsheet projects to the pricing of a variety of complex financial instruments. Hints and solutions to odd-numbered problems are given in an appendix and a full solutions manual is available for qualifying instructors.

Optimal Statistical Inference in Financial Engineering

Author: Masanobu Taniguchi
Publisher: CRC Press
ISBN: 1420011030
Release Date: 2007-11-26
Genre: Mathematics

Until now, few systematic studies of optimal statistical inference for stochastic processes had existed in the financial engineering literature, even though this idea is fundamental to the field. Balancing statistical theory with data analysis, Optimal Statistical Inference in Financial Engineering examines how stochastic models can effectively describe actual financial data and illustrates how to properly estimate the proposed models. After explaining the elements of probability and statistical inference for independent observations, the book discusses the testing hypothesis and discriminant analysis for independent observations. It then explores stochastic processes, many famous time series models, their asymptotically optimal inference, and the problem of prediction, followed by a chapter on statistical financial engineering that addresses option pricing theory, the statistical estimation for portfolio coefficients, and value-at-risk (VaR) problems via residual empirical return processes. The final chapters present some models for interest rates and discount bonds, discuss their no-arbitrage pricing theory, investigate problems of credit rating, and illustrate the clustering of stock returns in both the New York and Tokyo Stock Exchanges. Basing results on a modern, unified optimal inference approach for various time series models, this reference underlines the importance of stochastic models in the area of financial engineering.

Stochastic Finance

Author: Nicolas Privault
Publisher: CRC Press
ISBN: 9781466594029
Release Date: 2013-12-20
Genre: Business & Economics

Stochastic Finance: An Introduction with Market Examples presents an introduction to pricing and hedging in discrete and continuous time financial models without friction, emphasizing the complementarity of analytical and probabilistic methods. It demonstrates both the power and limitations of mathematical models in finance, covering the basics of finance and stochastic calculus, and builds up to special topics, such as options, derivatives, and credit default and jump processes. It details the techniques required to model the time evolution of risky assets. The book discusses a wide range of classical topics including Black–Scholes pricing, exotic and American options, term structure modeling and change of numéraire, as well as models with jumps. The author takes the approach adopted by mainstream mathematical finance in which the computation of fair prices is based on the absence of arbitrage hypothesis, therefore excluding riskless profit based on arbitrage opportunities and basic (buying low/selling high) trading. With 104 figures and simulations, along with about 20 examples based on actual market data, the book is targeted at the advanced undergraduate and graduate level, either as a course text or for self-study, in applied mathematics, financial engineering, and economics.