Ordinary Differential Equations

Author: Charles Roberts
Publisher: CRC Press
ISBN: 9781439819098
Release Date: 2011-06-13
Genre: Mathematics

In the traditional curriculum, students rarely study nonlinear differential equations and nonlinear systems due to the difficulty or impossibility of computing explicit solutions manually. Although the theory associated with nonlinear systems is advanced, generating a numerical solution with a computer and interpreting that solution are fairly elementary. Bringing the computer into the classroom, Ordinary Differential Equations: Applications, Models, and Computing emphasizes the use of computer software in teaching differential equations. Providing an even balance between theory, computer solution, and application, the text discusses the theorems and applications of the first-order initial value problem, including learning theory models, population growth models, epidemic models, and chemical reactions. It then examines the theory for n-th order linear differential equations and the Laplace transform and its properties, before addressing several linear differential equations with constant coefficients that arise in physical and electrical systems. The author also presents systems of first-order differential equations as well as linear systems with constant coefficients that arise in physical systems, such as coupled spring-mass systems, pendulum systems, the path of an electron, and mixture problems. The final chapter introduces techniques for determining the behavior of solutions to systems of first-order differential equations without first finding the solutions. Designed to be independent of any particular software package, the book includes a CD-ROM with the software used to generate the solutions and graphs for the examples. The appendices contain complete instructions for running the software. A solutions manual is available for qualifying instructors.

Elementary Differential Equations

Author: Charles Roberts
Publisher: CRC Press
ISBN: 9781498776103
Release Date: 2018-12-13
Genre: Mathematics

Elementary Differential Equations, Second Edition is written with the knowledge that there has been a dramatic change in the past century in how solutions to differential equations are calculated. However, the way the topic has been taught in introductory courses has barely changed to reflect these advances, which leaves students at a disadvantage. This second edition has been created to address these changes and help instructors facilitate new teaching methods and the latest tools, which includes computers. The text is designed to help instructors who want to use computers in their classrooms. It accomplishes this by emphasizing and integrating computers in teaching elementary or ordinary differential equations. Many examples and exercises included in the text require the use of computer software to solve problems. It should be noted that since instructors use their own preferred software, this book has been written to be independent of any specific software package. Features: Focuses on numerical methods and computing to generate solutions Features extensive coverage of nonlinear differential equations and nonlinear systems Includes software programs to solve problems in the text which are located on the author's website Contains a wider variety of non-mathematical models than any competing textbook This second edition is a valuable, up-to-date tool for instructors teaching courses about differential equations. It serves as an excellent introductory textbook for undergraduate students majoring in applied mathematics, computer science, various engineering disciplines and other sciences. They also will find that the textbook will aide them greatly in their professional careers because of its instructions on how to use computers to solve equations.

Introduction to Computation and Modeling for Differential Equations

Author: Lennart Edsberg
Publisher: John Wiley & Sons
ISBN: 9781119018469
Release Date: 2015-09-16
Genre: Mathematics

Uses mathematical, numerical, and programming tools to solve differential equations for physical phenomena and engineering problems Introduction to Computation and Modeling for Differential Equations, Second Edition features the essential principles and applications of problem solving across disciplines such as engineering, physics, and chemistry. The Second Edition integrates the science of solving differential equations with mathematical, numerical, and programming tools, specifically with methods involving ordinary differential equations; numerical methods for initial value problems (IVPs); numerical methods for boundary value problems (BVPs); partial differential equations (PDEs); numerical methods for parabolic, elliptic, and hyperbolic PDEs; mathematical modeling with differential equations; numerical solutions; and finite difference and finite element methods. The author features a unique “Five-M” approach: Modeling, Mathematics, Methods, MATLAB®, and Multiphysics, which facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation and also demonstrates how a problem is solved numerically using the appropriate mathematical methods. With numerous real-world examples to aid in the visualization of the solutions, Introduction to Computation and Modeling for Differential Equations, Second Edition includes: New sections on topics including variational formulation, the finite element method, examples of discretization, ansatz methods such as Galerkin’s method for BVPs, parabolic and elliptic PDEs, and finite volume methods Numerous practical examples with applications in mechanics, fluid dynamics, solid mechanics, chemical engineering, heat conduction, electromagnetic field theory, and control theory, some of which are solved with computer programs MATLAB and COMSOL Multiphysics® Additional exercises that introduce new methods, projects, and problems to further illustrate possible applications A related website with select solutions to the exercises, as well as the MATLAB data sets for ordinary differential equations (ODEs) and PDEs Introduction to Computation and Modeling for Differential Equations, Second Edition is a useful textbook for upper-undergraduate and graduate-level courses in scientific computing, differential equations, ordinary differential equations, partial differential equations, and numerical methods. The book is also an excellent self-study guide for mathematics, science, computer science, physics, and engineering students, as well as an excellent reference for practitioners and consultants who use differential equations and numerical methods in everyday situations.

Differential Equations

Author: Charles Henry Edwards
Publisher: Prentice Hall
ISBN: UCSC:32106018838745
Release Date: 2008
Genre: Computers

This practical book reflects the new technological emphasis that permeates differential equations, including the wide availability of scientific computing environments like Maple, Mathematica, and MATLAB; it does not concentrate on traditional manual methods but rather on new computer-based methods that lead to a wider range of more realistic applications. The book starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout the book. For mathematicians and those in the field of computer science and engineering.

Mathematical Modelling

Author: Jagat Narain Kapur
Publisher: New Age International
ISBN: 812240006X
Release Date: 1988
Genre: Mathematical models

Each Chapter Of The Book Deals With Mathematical Modelling Through One Or More Specified Techniques. Thus There Are Chapters On Mathematical Modelling Through Algebra, Geometry, Trigonometry And Calculus, Through Ordinary Differential Equations Of First And Second Order, Through Systems Of Differential Equations, Through Difference Equations, Through Partial Differential Equations, Through Functional Equations And Integral Equations, Through Delay-Differential, Differential-Difference And Integro-Differential Equations, Through Calculus Of Variations And Dynamic Programming, Through Graphs, Through Mathematical Programming, Maximum Principle And Maximum Entropy Principle.Each Chapter Contains Mathematical Models From Physical, Biological, Social, Management Sciences And Engineering And Technology And Illustrates Unity In Diversity Of Mathematical Sciences.The Book Contains Plenty Of Exercises In Mathematical Modelling And Is Aimed To Give A Panoramic View Of Applications Of Modelling In All Fields Of Knowledge. It Contains Both Probabilistic And Deterministic Models.The Book Presumes Only The Knowledge Of Undergraduate Mathematics And Can Be Used As A Textbook At Senior Undergraduate Or Post-Graduate Level For A One Or Two- Semester Course For Students Of Mathematics, Statistics, Physical, Social And Biological Sciences And Engineering. It Can Also Be Useful For All Users Of Mathematics And For All Mathematical Modellers.

Differential Equation Analysis in Biomedical Science and Engineering

Author: William E. Schiesser
Publisher: John Wiley & Sons
ISBN: 9781118705230
Release Date: 2014-02-24
Genre: Mathematics

Features a solid foundation of mathematical and computationaltools to formulate and solve real-world ODE problems across variousfields With a step-by-step approach to solving ordinary differentialequations (ODEs), Differential Equation Analysis in BiomedicalScience and Engineering: Ordinary Differential EquationApplications with R successfully applies computationaltechniques for solving real-world ODE problems that are found in avariety of fields, including chemistry, physics, biology, andphysiology. The book provides readers with the necessary knowledgeto reproduce and extend the computed numerical solutions and is avaluable resource for dealing with a broad class of linear andnonlinear ordinary differential equations. The author’s primary focus is on models expressed assystems of ODEs, which generally result by neglecting spatialeffects so that the ODE dependent variables are uniform in space.Therefore, time is the independent variable in most applications ofODE systems. As such, the book emphasizes details of the numericalalgorithms and how the solutions were computed. Featuringcomputer-based mathematical models for solving real-world problemsin the biological and biomedical sciences and engineering, the bookalso includes: R routines to facilitate the immediate use of computation forsolving differential equation problems without having to firstlearn the basic concepts of numerical analysis and programming forODEs Models as systems of ODEs with explanations of the associatedchemistry, physics, biology, and physiology as well as thealgebraic equations used to calculate intermediate variables Numerical solutions of the presented model equations with adiscussion of the important features of the solutions Aspects of general ODE computation through variousbiomolecular science and engineering applications Differential Equation Analysis in Biomedical Science andEngineering: Ordinary Differential Equation Applications with Ris an excellent reference for researchers, scientists, clinicians,medical researchers, engineers, statisticians, epidemiologists, andpharmacokineticists who are interested in both clinicalapplications and interpretation of experimental data withmathematical models in order to efficiently solve the associateddifferential equations. The book is also useful as a textbook forgraduate-level courses in mathematics, biomedical science andengineering, biology, biophysics, biochemistry, medicine, andengineering.

Differential Equations and Boundary Value Problems

Author: Charles Henry Edwards
Publisher: Prentice Hall
ISBN: 0132061155
Release Date: 2008
Genre: Boundary value problems

This practical book reflects the new technological emphasis that permeates differential equations, including the wide availability of scientific computing environments like "Maple, Mathematica, " and MATLAB; it does not concentrate on traditional manual methods but rather on new computer-based methods that lead to a wider range of more realistic applications. The book starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout the book. For mathematicians and those in the field of computer science and engineering.

Automorphic Forms

Author: Anton Deitmar
Publisher: Springer Science & Business Media
ISBN: 9781447144359
Release Date: 2012-08-29
Genre: Mathematics

Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.

Ordinary Differential Equations

Author: Herbert Amann
Publisher: Walter de Gruyter
ISBN: 9783110853698
Release Date: 1990-01-01
Genre: Mathematics

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

Mathematics for Dynamic Modeling

Author: Edward Beltrami
Publisher: Academic Press
ISBN: 0120855666
Release Date: 1998
Genre: Mathematics

This new edition of Mathematics for Dynamic Modeling updates a widely used and highly-respected textbook. The text is appropriate for upper-level undergraduate and graduate level courses in modeling, dynamical systems, differential equations, and linear multivariable systems offered in a variety of departments including mathematics, engineering, computer science, and economics. The text features many different realistic applications from a wide variety of disciplines. The book covers important tools such as linearization, feedback concepts, the use of Liapunov functions, and optimal control. This new edition is a valuable tool for understanding and teaching a rapidly growing field. Practitioners and researchers may also find this book of interest. Contains a new chapter on stability of dynamic models Covers many realistic applications from a wide variety of fields in an accessible manner Provides a broad introduction to the full scope of dynamical systems Incorporates new developments such as new models for chemical reactions and autocatalysis Integrates MATLAB throughout the text in both examples and illustrations Includes a new introduction to nonlinear differential equations

An Introduction to Mathematical Modeling

Author: Edward A. Bender
Publisher: Courier Corporation
ISBN: 9780486137124
Release Date: 2012-05-23
Genre: Mathematics

Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 9781118164525
Release Date: 2011-10-24
Genre: Mathematics

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

A Course in Ordinary Differential Equations

Author: Stephen A. Wirkus
Publisher: CRC Press
ISBN: 9781466509108
Release Date: 2014-12-15
Genre: Mathematics

A Course in Ordinary Differential Equations, Second Edition teaches students how to use analytical and numerical solution methods in typical engineering, physics, and mathematics applications. Lauded for its extensive computer code and student-friendly approach, the first edition of this popular textbook was the first on ordinary differential equations (ODEs) to include instructions on using MATLAB®, Mathematica®, and MapleTM. This second edition reflects the feedback of students and professors who used the first edition in the classroom. New to the Second Edition Moves the computer codes to Computer Labs at the end of each chapter, which gives professors flexibility in using the technology Covers linear systems in their entirety before addressing applications to nonlinear systems Incorporates the latest versions of MATLAB, Maple, and Mathematica Includes new sections on complex variables, the exponential response formula for solving nonhomogeneous equations, forced vibrations, and nondimensionalization Highlights new applications and modeling in many fields Presents exercise sets that progress in difficulty Contains color graphs to help students better understand crucial concepts in ODEs Provides updated and expanded projects in each chapter Suitable for a first undergraduate course, the book includes all the basics necessary to prepare students for their future studies in mathematics, engineering, and the sciences. It presents the syntax from MATLAB, Maple, and Mathematica to give students a better grasp of the theory and gain more insight into real-world problems. Along with covering traditional topics, the text describes a number of modern topics, such as direction fields, phase lines, the Runge-Kutta method, and epidemiological and ecological models. It also explains concepts from linear algebra so that students acquire a thorough understanding of differential equations.

Differential Equations and Mathematical Biology Second Edition

Author: D.S. Jones
Publisher: CRC Press
ISBN: 1420083589
Release Date: 2009-11-09
Genre: Mathematics

Deepen students’ understanding of biological phenomena Suitable for courses on differential equations with applications to mathematical biology or as an introduction to mathematical biology, Differential Equations and Mathematical Biology, Second Edition introduces students in the physical, mathematical, and biological sciences to fundamental modeling and analytical techniques used to understand biological phenomena. In this edition, many of the chapters have been expanded to include new and topical material. New to the Second Edition A section on spiral waves Recent developments in tumor biology More on the numerical solution of differential equations and numerical bifurcation analysis MATLAB® files available for download online Many additional examples and exercises This textbook shows how first-order ordinary differential equations (ODEs) are used to model the growth of a population, the administration of drugs, and the mechanism by which living cells divide. The authors present linear ODEs with constant coefficients, extend the theory to systems of equations, model biological phenomena, and offer solutions to first-order autonomous systems of nonlinear differential equations using the Poincaré phase plane. They also analyze the heartbeat, nerve impulse transmission, chemical reactions, and predator–prey problems. After covering partial differential equations and evolutionary equations, the book discusses diffusion processes, the theory of bifurcation, and chaotic behavior. It concludes with problems of tumor growth and the spread of infectious diseases.

Mathematical Modeling

Author: Sandip Banerjee
Publisher: CRC Press
ISBN: 9781482229165
Release Date: 2014-02-07
Genre: Mathematics

Almost every year, a new book on mathematical modeling is published, so, why another? The answer springs directly from the fact that it is very rare to find a book that covers modeling with all types of differential equations in one volume. Until now. Mathematical Modeling: Models, Analysis and Applications covers modeling with all kinds of differential equations, namely ordinary, partial, delay, and stochastic. The book also contains a chapter on discrete modeling, consisting of differential equations, making it a complete textbook on this important skill needed for the study of science, engineering, and social sciences. More than just a textbook, this how-to guide presents tools for mathematical modeling and analysis. It offers a wide-ranging overview of mathematical ideas and techniques that provide a number of effective approaches to problem solving. Topics covered include spatial, delayed, and stochastic modeling. The text provides real-life examples of discrete and continuous mathematical modeling scenarios. MATLAB® and Mathematica® are incorporated throughout the text. The examples and exercises in each chapter can be used as problems in a project. Since mathematical modeling involves a diverse range of skills and tools, the author focuses on techniques that will be of particular interest to engineers, scientists, and others who use models of discrete and continuous systems. He gives students a foundation for understanding and using the mathematics that is the basis of computers, and therefore a foundation for success in engineering and science streams.