An Introduction to Semiclassical and Microlocal Analysis

Author: André Bach
Publisher: Springer Science & Business Media
ISBN: 9781475744958
Release Date: 2013-03-14
Genre: Mathematics

This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.

Semiclassical Analysis

Author: Maciej Zworski
Publisher: American Mathematical Soc.
ISBN: 9780821883204
Release Date: 2012
Genre: Mathematics

This book is an excellent, comprehensive introduction to semiclassical analysis. I believe it will become a standard reference for the subject. --Alejandro Uribe, University of Michigan Semiclassical analysis provides PDE techniques based on the classical-quantum (particle-wave) correspondence. These techniques include such well-known tools as geometric optics and the Wentzel-Kramers-Brillouin approximation. Examples of problems studied in this subject are high energy eigenvalue asymptotics and effective dynamics for solutions of evolution equations. From the mathematical point of view, semiclassical analysis is a branch of microlocal analysis which, broadly speaking, applies harmonic analysis and symplectic geometry to the study of linear and nonlinear PDE. The book is intended to be a graduate level text introducing readers to semiclassical and microlocal methods in PDE. It is augmented in later chapters with many specialized advanced topics which provide a link to current research literature.

Lectures on Nonlinear Hyperbolic Differential Equations

Author: Lars Hörmander
Publisher: Springer Science & Business Media
ISBN: 3540629211
Release Date: 1997-07-17
Genre: Mathematics

In this introductory textbook, a revised and extended version of well-known lectures by L. Hörmander from 1986, four chapters are devoted to weak solutions of systems of conservation laws. Apart from that the book only studies classical solutions. Two chapters concern the existence of global solutions or estimates of the lifespan for solutions of nonlinear perturbations of the wave or Klein-Gordon equation with small initial data. Four chapters are devoted to microanalysis of the singularities of the solutions. This part assumes some familiarity with pseudodifferential operators which are standard in the theory of linear differential operators, but the extension to the more exotic classes of opertors needed in the nonlinear theory is presented in complete detail.

Geometric Analysis

Author: Hubert L. Bray
Publisher: American Mathematical Soc.
ISBN: 9781470423131
Release Date: 2016-05-18
Genre: Geometric analysis

This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace–Beltrami operators.

Metrics on the Phase Space and Non Selfadjoint Pseudo Differential Operators

Author: Nicolas Lerner
Publisher: Springer Science & Business Media
ISBN: 3764385103
Release Date: 2011-01-30
Genre: Mathematics

This book is devoted to the study of pseudo-di?erential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We have tried here to expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for non-selfadjoint operators. The?rstchapter,Basic Notions of Phase Space Analysis,isintroductoryand gives a presentation of very classical classes of pseudo-di?erential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using aprioriestimates,andnotFourierintegraloperators),andweintroducethereader to local solvability problems. That chapter should be useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudo-di?erential operators. The second chapter, Metrics on the Phase Space begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. H ̈ ormander (Chapter 18 in the book [73]) on this topic.

Nonlinear Optical and Atomic Systems

Author: Christophe Besse
Publisher: Springer
ISBN: 9783319190150
Release Date: 2015-08-26
Genre: Science

Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is an extremely active field in physics and mathematical physics, with a very broad range of implications, both for fundamental science and technological applications: light propagation in microstructured optical fibers, Bose-Einstein condensates, disordered systems, and the newly emerging field of nonlinear quantum mechanics. Accessible to PhD students, this book will also be of interest to post-doctoral researchers and seasoned academics.

Asymptotic Analysis in General Relativity

Author: Thierry Daudé
Publisher: Cambridge University Press
ISBN: 9781316649404
Release Date: 2018-01-11
Genre: Mathematics

Introduction to modern methods for classical and quantum fields in general relativity / Thierry Daudé, Dietrich Häfner, and Jean-Philippe Nicolas -- Geometry of black hole spacetimes / Lars Andersson, Thomas B. Ackdahl, and Pieter Blue -- An introduction to Quantum Field Theory on curved space-times / Christian Gerard -- A minicourse on microlocal analysis for wave propagation / Andras Vasy -- An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity / Sean N. Curry and A. Rod Gover

Geometric Scattering Theory

Author: Richard B. Melrose
Publisher: Cambridge University Press
ISBN: 0521498104
Release Date: 1995-07-28
Genre: Mathematics

This book is an overview of scattering theory. The author shows how this theory provides a parametrization of the continuous spectrum of an elliptic operator on a complete manifold with uniform structure at infinity. In the first two lectures the author describes the simple and fundamental case of the Laplacian on Euclidean space to introduce the theory's basic framework. In the next three lectures, he outlines various results on Euclidean scattering, and the methods used to prove them. In the last three lectures he extends these ideas to non-Euclidean settings.

Eigenfunctions of the Laplacian on a Riemannian Manifold

Author: Steve Zelditch
Publisher: American Mathematical Soc.
ISBN: 9781470410377
Release Date: 2017-12-12
Genre: Eigenfunctions

Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.

Evolution Equations

Author: David Ellwood
Publisher: American Mathematical Soc.
ISBN: 9780821868614
Release Date: 2013-06-26
Genre: Mathematics

This volume is a collection of notes from lectures given at the 2008 Clay Mathematics Institute Summer School, held in Zürich, Switzerland. The lectures were designed for graduate students and mathematicians within five years of the Ph.D., and the main focus of the program was on recent progress in the theory of evolution equations. Such equations lie at the heart of many areas of mathematical physics and arise not only in situations with a manifest time evolution (such as linear and nonlinear wave and Schrödinger equations) but also in the high energy or semi-classical limits of elliptic problems. The three main courses focused primarily on microlocal analysis and spectral and scattering theory, the theory of the nonlinear Schrödinger and wave equations, and evolution problems in general relativity. These major topics were supplemented by several mini-courses reporting on the derivation of effective evolution equations from microscopic quantum dynamics; on wave maps with and without symmetries; on quantum N-body scattering, diffraction of waves, and symmetric spaces; and on nonlinear Schrödinger equations at critical regularity. Although highly detailed treatments of some of these topics are now available in the published literature, in this collection the reader can learn the fundamental ideas and tools with a minimum of technical machinery. Moreover, the treatment in this volume emphasizes common themes and techniques in the field, including exact and approximate conservation laws, energy methods, and positive commutator arguments. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Advances in Elliptic Curve Cryptography

Author: Ian F. Blake
Publisher: Cambridge University Press
ISBN: 1139441221
Release Date: 2005-04-25
Genre: Mathematics

Since the appearance of the authors' first volume on elliptic curve cryptography in 1999 there has been tremendous progress in the field. In some topics, particularly point counting, the progress has been spectacular. Other topics such as the Weil and Tate pairings have been applied in new and important ways to cryptographic protocols that hold great promise. Notions such as provable security, side channel analysis and the Weil descent technique have also grown in importance. This second volume addresses these advances and brings the reader up to date. Prominent contributors to the research literature in these areas have provided articles that reflect the current state of these important topics. They are divided into the areas of protocols, implementation techniques, mathematical foundations and pairing based cryptography. Each of the topics is presented in an accessible, coherent and consistent manner for a wide audience that will include mathematicians, computer scientists and engineers.

A Course in Convexity

Author: Alexander Barvinok
Publisher: American Mathematical Soc.
ISBN: 9780821829684
Release Date: 2002-11-19
Genre: Mathematics

Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.