Materials Characterization

Author: Naryanaswami (Mohan) Ranganathan
Publisher: CRC Press
ISBN: 9789814613071
Release Date: 2016-01-05
Genre: Technology & Engineering

This book, which is a result of a coordinated effort by 22 researchers from five different countries, addresses the methods of determining the local and global mechanical properties of a variety of materials: metals, plastics, rubber, and ceramics. The first chapter treats nanoindentation techniques comprehensively. Chapter 2 concerns polymer surface properties using nanoindentation techniques. Chapter 3 deals with the wear properties of dental composites. Chapter 4 compares the global and local properties of a lead-free solder. Chapter 5 discusses the methods of determining plastic zones at the crack tip. Fatigue resistance of a synthetic polymer under different loading conditions is dealt with in Chapter 6. Chapter 7 is a review of the methods used to measure fatigue crack growth resistance. Chapter 8 treats bulk and surface properties of coated materials, and the final chapter presents a method for determining elastic constants using a resonance technique. All in all, its depth of coverage makes it a must-have for research scholars, graduate students, and teachers.

Materials Characterization Techniques

Author: Sam Zhang
Publisher: CRC Press
ISBN: 9781420042955
Release Date: 2008-12-22
Genre: Technology & Engineering

Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today—whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material’s structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researchers apply basic principles of chemistry, physics, and biology to address its scientific fundamentals, as well as how it is processed and engineered for use. Emphasizing practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used, advanced surface and structural characterization techniques for quality assurance, contamination control, and process improvement. This useful volume: Explores scientific processes to characterize materials using modern technologies Provides analysis of materials’ performance under specific use conditions Focuses on the interrelationships and interdependence between processing, structure, properties, and performance Details the sophisticated instruments involved in an interdisciplinary approach to understanding the wide range of mutually interacting processes, mechanisms, and materials Covers electron, X-ray-photoelectron, and UV spectroscopy; scanning-electron, atomic-force, transmission-electron, and laser-confocal-scanning-florescent microscopy, and gel electrophoresis chromatography Presents the fundamentals of vacuum, as well as X-ray diffraction principles Explaining appropriate uses and related technical requirements for characterization techniques, the authors omit lengthy and often intimidating derivations and formulations. Instead, they emphasize useful basic principles and applications of modern technologies used to characterize engineering materials, helping readers grasp micro- and nanoscale properties. This text will serve as a valuable guide for scientists and engineers involved in characterization and also as a powerful introduction to the field for advanced undergraduate and graduate students.

Computational Methods and Experiments in Materials Characterization III

Author: C. A. Brebbia
Publisher: WIT Press
ISBN: 9781845640804
Release Date: 2007
Genre: Technology & Engineering

Until recently, engineering materials could be characterized successfully using relatively simple testing procedures. As materials technology advances, interest is growing in materials possessing complex meso-, micro- and nano-structures, which to a large extent determine their physical properties and behaviour. The purposes of materials modelling are many: optimization, investigation of failure, simulation of production processes, to name but a few. Modelling and characterisation are closely intertwined, increasingly so as the complexity of the material increases. Characterisation, in essence, is the connection between the abstract material model and the real-world behaviour of the material in question. Characterisation of complex materials therefore may require a combination of experimental techniques and computation. This book publishes papers presented at the Third International Conference on Computational Methods and Experiments in Material Characterisation.Topics covered include: Composites; Ceramics; Alloys; Cements and Cement Based Materials; Biomaterials; Thin Films and Coatings; Advanced Materials; Imaging Analysis; Thermal Analysis; New Methods; Surface Chemistry, Nano Indentation; Continuum Methods; Particle Models; Damage Mechanics; Innovative Techniques; Stochastic Methods.

Materials Characterization

Author: Ramiro Pérez Campos
Publisher: Springer
ISBN: 9783319152042
Release Date: 2015-04-27
Genre: Technology & Engineering

This book covers novel research results for process and techniques of materials characterization for a wide range of materials. The authors provide a comprehensive overview of the aspects of structural and chemical characterization of these materials. The articles contained in this book covers state of the art and experimental techniques commonly used in modern materials characterization. The book includes theoretical models and numerous illustrations of structural and chemical characterization properties.

Concise Encyclopedia of Materials Characterization

Author: R.W. Cahn
Publisher: Elsevier
ISBN: 9781483287515
Release Date: 2016-01-22
Genre: Technology & Engineering

To use materials effectively, their composition, degree of perfection, physical and mechanical characteristics, and microstructure must be accurately determined. This concise encyclopledia covers the wide range of characterization techniques necessary to achieve this. Articles included are not only concerned with the characterization techniques of specific materials such as polymers, metals, ceramics and semiconductors but also techniques which can be applied to materials in general. The techniques described cover bulk methods, and also a number of specific methods to study the topography and composition of surface and near-surface regions. These techniques range from the well-established and traditional to the very latest including: atomic force microscopy; confocal optical microscopy; gamma ray diffractometry; thermal wave imaging; x-ray diffraction and time-resolved techniques. This unique concise encyclopedia comprises 116 articles by leading experts in the field from around the world to create the ideal guide for materials scientists, chemists and engineers involved with any aspect of materials characterization. With over 540 illustrations, extensive cross-referencing, approximately 900 references, and a detailed index, this concise encyclopedia will be a valuable asset to any materials science collection.

A Guide to Materials Characterization and Chemical Analysis

Author: John P. Sibilia
Publisher: John Wiley & Sons
ISBN: 0471186333
Release Date: 1996
Genre: Science

This book provides an overview of the most current techniques used for chemical analysis, materials evaluation, and materials testing. Over 100 materials methodologies, evaluations, chemical analyses, physical testing, and scientific computing techniques are covered, including the fields of molecular spectroscopy, mass spectroscopy, chromatography, chemical analysis, x-ray analysis, microscopy, surface science, thermal analysis, and polymer characterization. All of the.

Neutrons and Synchrotron Radiation in Engineering Materials Science

Author: Peter Staron
Publisher: John Wiley & Sons
ISBN: 9783527335923
Release Date: 2017-06-12
Genre: Science

Besides its coverage of the four important aspects of synchrotron sources, materials and material processes, measuring techniques, and applications, this ready reference presents both important method types: diffraction and tomography. Following an introduction, a general section leads on to methods, while further sections are devoted to emerging methods and industrial applications. In this way, the text provides new users of large-scale facilities with easy access to an understanding of both the methods and opportunities offered by different sources and instruments.

Nondestructive Characterization of Materials XI

Author: Robert E. Green
Publisher: Springer Science & Business Media
ISBN: 3540401547
Release Date: 2003-06-18
Genre: Technology & Engineering

The papers published in these proceedings represent the latest developments in Nondestructive Characterization of Materials and were presented at the Eleventh International Symposium on Nondestructive Characterization of Materials held in June 24-28, 2002 in Berlin, Germany.

Modern Materials

Author: Bruce W. Gonser
Publisher: Elsevier
ISBN: 9781483221588
Release Date: 2013-10-22
Genre: Technology & Engineering

Modern Materials: Advances in Development and Applications, Volume 6 is a six-chapter text that provides comprehensive insight into the properties, applications, progress, and potentialities of various materials. The opening chapter deals with the characteristics, preparation, marketing, economics, and uses of radiation-processed wood-plastic materials. The succeeding chapters are devoted to the technological applications of materials, such as precious stones, solid propellants, and superconductors. A chapter surveys the engineering advances and technical used of glass materials. The concluding chapter discusses the occurrence, recovery, fabrication, unique properties, and applications of beryllium. Materials scientists, engineers, researchers, teachers, and students will find this book rewarding.

X ray Characterization of Materials

Author: Eric Lifshin
Publisher: John Wiley & Sons
ISBN: 9783527613755
Release Date: 2008-07-11
Genre: Technology & Engineering

Linking of materials properties with microstructures is a fundamental theme in materials science, for which a detailed knowledge of the modern characterization techniques is essential. Since modern materials such as high-temperature alloys, engineering thermoplastics and multilayer semiconductor films have many elemental constituents distributed in more than one phase, characterization is essential to the systematic development of such new materials and understanding how they behave in practical applications. X-ray techniques play a major role in providing information on the elemental composition and crystal and grain structures of all types of materials. The challenge to the materials characterization expert is to understand how specific instruments and analytical techniques can provide detailed information about what makes each material unique. The challenge to the materials scientist, chemist, or engineer is to know what information is needed to fully characterize each material and how to use this information to explain its behavior, develop new and improved properties, reduce costs, or ensure compliance with regulatory requirements. This comprehensive handbook presents all the necessary background to understand the applications of X-ray analysis to materials characterization with particular attention to the modern approach to these methods.

Ion Beam Analysis

Author: Michael Nastasi
Publisher: CRC Press
ISBN: 9781439846391
Release Date: 2014-08-27
Genre: Science

Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization. The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nuclear reaction analysis. The second part turns to applications, looking at the broad range of potential uses in thin film reactions, ion implantation, nuclear energy, biology, and art/archaeology. Examines classical collision theory Details the fundamentals of five specific ion beam analysis techniques Illustrates specific applications, including biomedicine and thin film analysis Provides examples of ion beam analysis in traditional and emerging research fields Supplying readers with the means to understand the benefits and limitations of IBA, the book offers practical information that users can immediately apply to their own work. It covers the broad range of current and emerging applications in materials science, physics, art, archaeology, and biology. It also includes a chapter on computer applications of IBA.

Modern Methods for Analysing Archaeological and Historical Glass

Author: Koen H. A. Janssens
Publisher: John Wiley & Sons
ISBN: 9781118314203
Release Date: 2013-01-29
Genre: Science

The first scientific volume to compile the modern analytical techniques for glass analysis, Modern Methods for Analysing Archaeological and Historical Glass presents an up-to-date description of the physico-chemical methods suitable for determining the composition of glass and for speciation of specific components. This unique resource presents members of Association Internationale pour l'Histoire du Verre, as well as university scholars, with a number of case studies where the effective use of one or more of these methods for elucidating a particular culturo-historical or historo-technical aspect of glass manufacturing technology is documented.

Materials Chemistry

Author: Bradley D. Fahlman
Publisher: Springer Science & Business Media
ISBN: 9400706936
Release Date: 2011-03-18
Genre: Technology & Engineering

The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 2nd edition continues to offer innovative coverage and practical perspective throughout, e.g.: the opening solid-state chemistry chapter uses color illustrations of crystalline unit cells and digital photos of models to clarify their structures. This edition features more archetypical unit cells and includes fundamental principles of X-ray crystallography and band theory. In addition, an ample amorphous-solids section has been expanded to include more details regarding zeolite syntheses, as well as ceramics classifications and their biomaterial applications. The subsequent metals chapter has been re-organized for clarity, and continues to treat the full spectrum of powder metallurgical methods, complex phase behaviors of the Fe-C system and steels, and topics such as corrosion and shape-memory properties. The mining/processing of metals has also been expanded to include photographs of various processes occurring in an actual steelmaking plant. The semiconductor chapter addresses evolution and limitations/solutions of modern transistors, as well as IC fabrication and photovoltaics. Building on the fundamentals presented earlier, more details regarding the band structure of semiconductors is now included, as well as discussions of GaAs vs. Si for microelectronics applications, and surface reconstruction nomenclature. The emerging field of ‘soft lithographic’ patterning is now included in this chapter, and thin film deposition methodologies are also greatly expanded to now include more fundamental aspects of chemical vapor deposition (CVD) and atomic layer deposition (ALD). The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. This chapter describes all polymeric classes including dendritic polymers, as well as important additives such as plasticizers and flame-retardants, and emerging applications such as molecular magnets and self-repairing polymers. This edition now features ‘click chemistry’ polymerization, silicones, conductive polymers and biomaterials applications such as biodegradable polymers, biomedical devices, drug delivery, and contact lenses. Final chapters on nanomaterials and materials-characterization techniques are also carefully surveyed, focusing on nomenclature, synthetic techniques, and applications taken from the latest scientific literature. The 2nd edition has been significantly updated to now include nanotoxicity, vapor-phase growth of 0-D nanostructures, and more details regarding synthetic techniques and mechanisms for solution-phase growth of various nanomaterials. Graphene, recognized by the 2010 Nobel Prize in Physics, is now also included in this edition. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions. The appendices have also been updated with additional laboratory modules for materials synthesis (e.g., porous silicon) and a comprehensive timeline of major materials developments.

Microanalysis of Solids

Author: B.G. Yacobi
Publisher: Springer Science & Business Media
ISBN: 030644433X
Release Date: 1994-02-28
Genre: Science

This book systematically describes the most widely used techniques for the microanalysis of the physical, structural, and compositional properties of solids. Covering electron beams, ion beams, photon beams, and acoustic waves, it will provide physicists, materials scientists, electrical engineers, chemists, and their students with a comprehensive reference source.