Ion Beam Modification of Materials

Author: J.S. Williams
Publisher: Newnes
ISBN: 9780444599742
Release Date: 2012-12-02
Genre: Technology & Engineering

This conference consisted of 15 oral sessions, including three plenary papers covering areas of general interest, 22 specialist invited papers and 51 contributed presentations as well as three poster sessions. There were several scientific highlights covering a diverse spectrum of materials and ion beam processing methods. These included a wide range of conventional and novel applications such as: optical displays and opto-electronics, motor vehicle and tooling parts, coatings tailored for desired properties, studies of fundamental defect properties, the production of novel (often buried) compounds, and treating biomedical materials. The study of nanocrystals produced by ion implantation in a range of host matrices, particularly for opto-electronics applications, was one especially new and exciting development. Despite several decades of study, major progress was reported at the conference in understanding defect evolution in semiconductors and the role of defects in transient impurity diffusion. The use of implantation to tune or isolate optical devices and in forming optically active centres and waveguides in semiconductors, polymers and oxide ceramics was a major focus of several presentations at the conference. The formation of hard coatings by ion assisted deposition or direct implantation was also an area which showed much recent progress. Ion beam techniques had also developed apace, particularly those based on plasma immersion ion implantation or alternative techniques for large area surface treatment. Finally, the use of ion beams for the direct treatment of cancerous tissue was a particularly novel and interesting application of ion beams.

Laser and Ion Beam Modification of Materials

Author: I. Yamada
Publisher: Elsevier
ISBN: 9781483164045
Release Date: 2013-10-22
Genre: Technology & Engineering

Laser and Ion Beam Modification of Materials is a compilation of materials from the proceedings of the symposium U: Material Synthesis and Modification by Ion beams and Laser Beams. This collection discusses the founding of the KANSAI Science City in Japan, and the structures, equipment, and research projects of two institutions are discussed pertaining to eV-MeV ion beams. A description of ion beams as used in materials research and in manufacturing processes, along with trends in ion implantation technology in semiconductors, is discussed. Research into ion beams by China and its industrial uses in non-semiconductor area is noted. For industrial applications, developing technology in terms of high speed, large surface modifications and use of high doses is important. Thus, the development of different ion beam approaches is examined. Industrial applications of ion and laser processing are discussed as cluster beams are used in solid state physics and chemistry. Mention is made on a high power discharge pumped solid state physics (ArF) excimer laser as a potential light source for better material processing. Under ion beam material processing is nanofabrication using focused ion beams, important for research work in mesoscopic systems. Progress in the use of ion-beam mixing using kinetic energy of ion-beams to mingle with pre-deposited surface layers of substrate materials has shown promise. Advanced materials researchers and scientists, as well as academicians in the field of nuclear physics, will find this collection helpful.

Materials Science with Ion Beams

Author: Harry Bernas
Publisher: Springer Science & Business Media
ISBN: 9783540887898
Release Date: 2009-10-03
Genre: Technology & Engineering

Materials science is the prime example of an interdisciplinary science. It - compasses the ?elds of physics, chemistry, material science, electrical en- neering, chemical engineering and other disciplines. Success has been o- standing. World-class accomplishments in materials have been recognized by NobelprizesinPhysicsandChemistryandgivenrisetoentirelynewtechno- gies. Materials science advances have underpinned the technology revolution that has driven societal changes for the last ?fty years. Obviouslytheendisnotinsight!Futuretechnology-basedproblemsd- inatethecurrentscene.Highonthelistarecontrolandconservationofenergy and environment, water purity and availability, and propagating the inf- mation revolution. All fall in the technology domain. In every case proposed solutions begin with new forms of materials, materials processing or new arti?cial material structures. Scientists seek new forms of photovoltaics with greater e?ciency and lower cost. Water purity may be solved through surface control, which promises new desalination processes at lower energy and lower cost. Revolutionary concepts to extend the information revolution reside in controlling the “spin” of electrons or enabling quantum states as in quantum computing. Ion-beam experts make substantial contributions to all of these burgeoning sciences.

Ion Beam Modification of Solids

Author: Werner Wesch
Publisher: Springer
ISBN: 9783319335612
Release Date: 2016-08-15
Genre: Science

This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for insulators and semiconductors. Finally some selected applications of ion beams are given.

Ion Beam Treatment of Polymers

Author: Alexey Kondyurin
Publisher: Newnes
ISBN: 9780080999180
Release Date: 2014-09-25
Genre: Technology & Engineering

Ion Beam Treatment of Polymers, Second Edition presents the results of polymer investigations and technique development in the field of polymer modification by high-energy ion beams. It shows how to use ion beam equipment in the polymer industry, as well as how to use it to produce new polymer materials. The authors, scientists and researchers active in the field, provide analysis and data from their work, and give an overview of related work by others. The authors focus on wetting, adhesion, hardness, chemical activity, environmental stability, biocompatibility, new synthesis methods, and space flight construction. The technologies of material modification by a beam of high energy ions have wide applications in different fields, from microelectronics to medicine. Historically, ion beam treatment of polymers had fewer applications due to high costs of ion beam equipment and low costs of polymer materials. The modern development of new pulse sources with a high current density and wide ion beams increase the effectiveness of ion beam technology for polymers. Collates data from many scientists working in polymer chemistry, physics of ion beam implantation, and in development and production of ion beam equipment Covers industrial and scientific applications of ion beam implanted polymers Integrates physical and chemical aspects of the processes in polymers treated by ion beams

Handbook of Ion Beam Processing Technology

Author: J. J. Cuomo
Publisher: William Andrew
ISBN: 081551199X
Release Date: 1989
Genre: Reference

Deals with ion beam processing for basic sputter etching of samples, sputter deposition of thin films, the synthesis of material in thin film form, and the modification of the properties of thin films.

Surface Engineering of Metals

Author: Tadeusz Burakowski
Publisher: CRC Press
ISBN: 1420049925
Release Date: 1998-12-23
Genre: Technology & Engineering

Surface Engineering of Metals provides basic definitions of classical and modern surface treatments, addressing mechanisms of formation, microstructure, and properties of surface layers. Part I outlines the fundamentals of surface engineering, presents the history of its development, and proposes a two-category classification of surface layers. Discussions include the basic potential and usable properties of superficial layers and coatings, explaining their concept, interaction with other properties, and the significance of these properties for proper selection and functioning. Part II provides an original classification of the production methods of surface layers. Discussions include the latest technologies in this field, characterized by directional or beam interaction of particles or of the heating medium with the treat surface.

Materials Science with Ion Beams

Author: Harry Bernas
Publisher: Springer Science & Business Media
ISBN: 9783540887898
Release Date: 2009-10-03
Genre: Technology & Engineering

Materials science is the prime example of an interdisciplinary science. It - compasses the ?elds of physics, chemistry, material science, electrical en- neering, chemical engineering and other disciplines. Success has been o- standing. World-class accomplishments in materials have been recognized by NobelprizesinPhysicsandChemistryandgivenrisetoentirelynewtechno- gies. Materials science advances have underpinned the technology revolution that has driven societal changes for the last ?fty years. Obviouslytheendisnotinsight!Futuretechnology-basedproblemsd- inatethecurrentscene.Highonthelistarecontrolandconservationofenergy and environment, water purity and availability, and propagating the inf- mation revolution. All fall in the technology domain. In every case proposed solutions begin with new forms of materials, materials processing or new arti?cial material structures. Scientists seek new forms of photovoltaics with greater e?ciency and lower cost. Water purity may be solved through surface control, which promises new desalination processes at lower energy and lower cost. Revolutionary concepts to extend the information revolution reside in controlling the “spin” of electrons or enabling quantum states as in quantum computing. Ion-beam experts make substantial contributions to all of these burgeoning sciences.

Ion Beam Assisted Film Growth

Author: T. Itoh
Publisher: Elsevier
ISBN: 9780444599087
Release Date: 2012-12-02
Genre: Science

This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams. Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in this field.

Ion Beam Analysis

Author: Michael Nastasi
Publisher: CRC Press
ISBN: 9781439846384
Release Date: 2014-08-27
Genre: Science

Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization. The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nuclear reaction analysis. The second part turns to applications, looking at the broad range of potential uses in thin film reactions, ion implantation, nuclear energy, biology, and art/archaeology. Examines classical collision theory Details the fundamentals of five specific ion beam analysis techniques Illustrates specific applications, including biomedicine and thin film analysis Provides examples of ion beam analysis in traditional and emerging research fields Supplying readers with the means to understand the benefits and limitations of IBA, the book offers practical information that users can immediately apply to their own work. It covers the broad range of current and emerging applications in materials science, physics, art, archaeology, and biology. It also includes a chapter on computer applications of IBA.

Ion Beam Processing of Materials and Deposition Processes of Protective Coatings

Author: P.L.F. Hemment
Publisher: Newnes
ISBN: 9780444596314
Release Date: 2012-12-02
Genre: Technology & Engineering

Containing the proceedings of three symposia in the E-MRS series this book is divided into two parts. Part one is concerned with ion beam processing, a particularly powerful and versatile technology which can be used both to synthesise and modify materials, including metals, semiconductors, ceramics and dielectrics, with great precision and excellent control. Furthermore it also deals with the correlated effects in atomic and cluster ion bombardment and implantation. Part two deals with the deposition techniques, characterization and applications of advanced ceramic, metallic and polymeric coatings or thin films for surface protection against corrosion, erosion, abrasion, diffusion and for lubrication of contracting surfaces in relative motion.

Ion Implantation and Synthesis of Materials

Author: Michael Nastasi
Publisher: Springer Science & Business Media
ISBN: 9783540452980
Release Date: 2007-05-16
Genre: Science

Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

Ion Beam Treatment of Polymers

Author: Alexey Kondyurin
Publisher: Newnes
ISBN: 9780080999180
Release Date: 2014-09-25
Genre: Technology & Engineering

Ion Beam Treatment of Polymers, Second Edition presents the results of polymer investigations and technique development in the field of polymer modification by high-energy ion beams. It shows how to use ion beam equipment in the polymer industry, as well as how to use it to produce new polymer materials. The authors, scientists and researchers active in the field, provide analysis and data from their work, and give an overview of related work by others. The authors focus on wetting, adhesion, hardness, chemical activity, environmental stability, biocompatibility, new synthesis methods, and space flight construction. The technologies of material modification by a beam of high energy ions have wide applications in different fields, from microelectronics to medicine. Historically, ion beam treatment of polymers had fewer applications due to high costs of ion beam equipment and low costs of polymer materials. The modern development of new pulse sources with a high current density and wide ion beams increase the effectiveness of ion beam technology for polymers. Collates data from many scientists working in polymer chemistry, physics of ion beam implantation, and in development and production of ion beam equipment Covers industrial and scientific applications of ion beam implanted polymers Integrates physical and chemical aspects of the processes in polymers treated by ion beams