Dynamical Systems IX

Author: D.V. Anosov
Publisher: Springer Science & Business Media
ISBN: 9783662031728
Release Date: 2013-03-14
Genre: Mathematics

This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are "sufficiently many" such trajectories and the phase space is compact, then although they "tend to diverge from one another" as it were, they "have nowhere to go" and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about "chaos" in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details).

Dynamical Systems on 2 and 3 Manifolds

Author: Viacheslav Z. Grines
Publisher: Springer
ISBN: 9783319448473
Release Date: 2016-11-11
Genre: Mathematics

This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.

Hyperbolic Chaos

Author: Sergey P. Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 9783642236662
Release Date: 2012-03-20
Genre: Science

"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.

The Golden Non Euclidean Geometry

Author: Alexey Stakhov
Publisher: World Scientific
ISBN: 9789814678315
Release Date: 2016-07-14
Genre: Mathematics

This unique book overturns our ideas about non-Euclidean geometry and the fine-structure constant, and attempts to solve long-standing mathematical problems. It describes a general theory of "recursive" hyperbolic functions based on the "Mathematics of Harmony," and the "golden," "silver," and other "metallic" proportions. Then, these theories are used to derive an original solution to Hilbert's Fourth Problem for hyperbolic and spherical geometries. On this journey, the book describes the "golden" qualitative theory of dynamical systems based on "metallic" proportions. Finally, it presents a solution to a Millennium Problem by developing the Fibonacci special theory of relativity as an original physical-mathematical solution for the fine-structure constant. It is intended for a wide audience who are interested in the history of mathematics, non-Euclidean geometry, Hilbert's mathematical problems, dynamical systems, and Millennium Problems. Contents:The Golden Ratio, Fibonacci Numbers, and the "Golden" Hyperbolic Fibonacci and Lucas FunctionsThe Mathematics of Harmony and General Theory of Recursive Hyperbolic FunctionsHyperbolic and Spherical Solutions of Hilbert's Fourth Problem: The Way to the Recursive Non-Euclidean GeometriesIntroduction to the "Golden" Qualitative Theory of Dynamical Systems Based on the Mathematics of HarmonyThe Basic Stages of the Mathematical Solution to the Fine-Structure Constant Problem as a Physical Millennium ProblemAppendix: From the "Golden" Geometry to the Multiverse Readership: Advanced undergraduate and graduate students in mathematics and theoretical physics, mathematicians and scientists of different specializations interested in history of mathematics and new mathematical ideas.

Algebraic Geometry II

Author: I.R. Shafarevich
Publisher: Springer Science & Business Media
ISBN: 3540546804
Release Date: 1995-12-21
Genre: Mathematics

This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.

Dynamical Systems II

Author: Ya.G. Sinai
Publisher: Springer Science & Business Media
ISBN: 9783662067888
Release Date: 2013-11-11
Genre: Mathematics

Following the concept of the EMS series this volume sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and to its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. Then the ergodic theory of smooth dynamical systems is presented - hyperbolic theory, billiards, one-dimensional systems and the elements of KAM theory. Numerous examples are presented carefully along with the ideas underlying the most important results. The last part of the book deals with the dynamical systems of statistical mechanics, and in particular with various kinetic equations. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it.

The Mathematics of Harmony

Author: Alexey Stakhov
Publisher: World Scientific
ISBN: 9789812775832
Release Date: 2009
Genre: Computer science

Assisted by Scott Olsen ( Central Florida Community College, USA ). This volume is a result of the author's four decades of research in the field of Fibonacci numbers and the Golden Section and their applications. It provides a broad introduction to the fascinating and beautiful subject of the OC Mathematics of Harmony, OCO a new interdisciplinary direction of modern science. This direction has its origins in OC The ElementsOCO of Euclid and has many unexpected applications in contemporary mathematics (a new approach to a history of mathematics, the generalized Fibonacci numbers and the generalized golden proportions, the OC goldenOCO algebraic equations, the generalized Binet formulas, Fibonacci and OC goldenOCO matrices), theoretical physics (new hyperbolic models of Nature) and computer science (algorithmic measurement theory, number systems with irrational radices, Fibonacci computers, ternary mirror-symmetrical arithmetic, a new theory of coding and cryptography based on the Fibonacci and OC goldenOCO matrices). The book is intended for a wide audience including mathematics teachers of high schools, students of colleges and universities and scientists in the field of mathematics, theoretical physics and computer science. The book may be used as an advanced textbook by graduate students and even ambitious undergraduates in mathematics and computer science. Sample Chapter(s). Introduction (503k). Chapter 1: The Golden Section (2,459k). Contents: Classical Golden Mean, Fibonacci Numbers, and Platonic Solids: The Golden Section; Fibonacci and Lucas Numbers; Regular Polyhedrons; Mathematics of Harmony: Generalizations of Fibonacci Numbers and the Golden Mean; Hyperbolic Fibonacci and Lucas Functions; Fibonacci and Golden Matrices; Application in Computer Science: Algorithmic Measurement Theory; Fibonacci Computers; Codes of the Golden Proportion; Ternary Mirror-Symmetrical Arithmetic; A New Coding Theory Based on a Matrix Approach. Readership: Researchers, teachers and students in mathematics (especially those interested in the Golden Section and Fibonacci numbers), theoretical physics and computer science."

Dynamical Systems Ergodic Theory and Applications

Author: L.A. Bunimovich
Publisher: Springer Science & Business Media
ISBN: 3540663169
Release Date: 2000-04-05
Genre: Mathematics

This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.

Progress and Challenges in Dynamical Systems

Author: Santiago Ibáñez
Publisher: Springer Science & Business Media
ISBN: 9783642388309
Release Date: 2013-09-20
Genre: Mathematics

This book contains papers based on talks given at the International Conference Dynamical Systems: 100 years after Poincaré held at the University of Oviedo, Gijón in Spain, September 2012. It provides an overview of the state of the art in the study of dynamical systems. This book covers a broad range of topics, focusing on discrete and continuous dynamical systems, bifurcation theory, celestial mechanics, delay difference and differential equations, Hamiltonian systems and also the classic challenges in planar vector fields. It also details recent advances and new trends in the field, including applications to a wide range of disciplines such as biology, chemistry, physics and economics. The memory of Henri Poincaré, who laid the foundations of the subject, inspired this exploration of dynamical systems. In honor of this remarkable mathematician, theoretical physicist, engineer and philosopher, the authors have made a special effort to place the reader at the frontiers of current knowledge in the discipline.

Dynamics Beyond Uniform Hyperbolicity

Author: Christian Bonatti
Publisher: Springer Science & Business Media
ISBN: 9783540268444
Release Date: 2006-03-30
Genre: Mathematics

What is Dynamics about? In broad terms, the goal of Dynamics is to describe the long term evolution of systems for which an "infinitesimal" evolution rule is known. Examples and applications arise from all branches of science and technology, like physics, chemistry, economics, ecology, communications, biology, computer science, or meteorology, to mention just a few. These systems have in common the fact that each possible state may be described by a finite (or infinite) number of observable quantities, like position, velocity, temperature, concentration, population density, and the like. Thus, m the space of states (phase space) is a subset M of an Euclidean space M . Usually, there are some constraints between these quantities: for instance, for ideal gases pressure times volume must be proportional to temperature. Then the space M is often a manifold, an n-dimensional surface for some n

Science at the Frontier

Author: Addison Greenwood
Publisher: National Academies Press
ISBN: 9780309560283
Release Date: 1992-01-15
Genre: Science

Science at the Frontier takes you on a journey through the minds of some of the nation's leading young scientists as they explore the most exciting areas of discovery today. Based on the second Frontiers of Science symposium sponsored by the National Academy of Sciences, this book describes recent accomplishments and new directions in ten basic fields, represented by outstanding scientists convening to discuss their research. It captures the excitement and personal quality of these exchanges, sometimes pointing to surprising connections spanning the boundaries of traditional disciplines, while providing a context for the reader that explains the basic scientific framework for the fields under discussion. The volume explores New modifications to scientific theory as geologists probe deep inside the earth and astrophysicists reach to the limits of the observable universe for answers to some of nature's most fundamental and vexing questions. The influence of research in smog formation on the public debate about how to effectively control air pollution. The increasing use of computer modeling in science, from describing the evolution of cellular automata to revealing the workings of the human brain via neural networks. The rise of dynamical systems (the study of chaotic behavior in nature) to a full-fledged science. The search to understand the regulation of gene activity and the many biological problems--such as the onset of cancer--to which it applies. Recent progress in the quest to transform what we know about photosynthesis into functional, efficient systems to tap the sun's energy. Current developments in magnetic resonance imaging and its promise for new breakthroughs in medical diagnosis. Throughout this work the reader is witness to scientific discovery and debate centered on such common concerns as the dramatic and transforming effect of computers on scientists' thinking and research; the development of more cross-disciplinary perspectives; and the very nature of the scientific enterprise itself--what it is to be part of it, and its significance for society. Science at the Frontier is must reading for informed lay readers, scientists interested in fields other than their own, and science students considering a future specialization.

Elements of Applied Bifurcation Theory

Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 0387219064
Release Date: 2004-06-29
Genre: Mathematics

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Singularity Theory I

Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 9783642580093
Release Date: 2012-12-06
Genre: Mathematics

This is a compact guide to the principles and main applications of Singularity Theory by one of the world’s top research groups. It includes a number of new results as well as a carefully prepared and extensive bibliography that makes it easy to find the necessary details. It’s ideal for any mathematician or physicist interested in modern mathematical analysis.

Hard Ball Systems and the Lorentz Gas

Author: L.A. Bunimovich
Publisher: Springer Science & Business Media
ISBN: 9783662040621
Release Date: 2013-12-11
Genre: Mathematics

Hard Ball Systems and the Lorentz Gas are fundamental models arising in the theory of Hamiltonian dynamical systems. Moreover, in these models, some key laws of statistical physics can also be tested or even established by mathematically rigorous tools. The mathematical methods are most beautiful but sometimes quite involved. This collection of surveys written by leading researchers of the fields - mathematicians, physicists or mathematical physicists - treat both mathematically rigourous results, and evolving physical theories where the methods are analytic or computational. Some basic topics: hyperbolicity and ergodicity, correlation decay, Lyapunov exponents, Kolmogorov-Sinai entropy, entropy production, irreversibility. This collection is a unique introduction into the subject for graduate students, postdocs or researchers - in both mathematics and physics - who want to start working in the field.