Dynamical Systems IX

Author: D.V. Anosov
Publisher: Springer Science & Business Media
ISBN: 9783662031728
Release Date: 2013-03-14
Genre: Mathematics

This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are "sufficiently many" such trajectories and the phase space is compact, then although they "tend to diverge from one another" as it were, they "have nowhere to go" and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about "chaos" in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details).

Dynamical Systems on 2 and 3 Manifolds

Author: Viacheslav Z. Grines
Publisher: Springer
ISBN: 9783319448473
Release Date: 2016-11-11
Genre: Mathematics

This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.

Hyperbolic Chaos

Author: Sergey P. Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 9783642236662
Release Date: 2012-03-20
Genre: Science

"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.

The Golden Non Euclidean Geometry

Author: Alexey Stakhov
Publisher: World Scientific
ISBN: 9789814678315
Release Date: 2016-07-14
Genre: Mathematics

This unique book overturns our ideas about non-Euclidean geometry and the fine-structure constant, and attempts to solve long-standing mathematical problems. It describes a general theory of "recursive" hyperbolic functions based on the "Mathematics of Harmony," and the "golden," "silver," and other "metallic" proportions. Then, these theories are used to derive an original solution to Hilbert's Fourth Problem for hyperbolic and spherical geometries. On this journey, the book describes the "golden" qualitative theory of dynamical systems based on "metallic" proportions. Finally, it presents a solution to a Millennium Problem by developing the Fibonacci special theory of relativity as an original physical-mathematical solution for the fine-structure constant. It is intended for a wide audience who are interested in the history of mathematics, non-Euclidean geometry, Hilbert's mathematical problems, dynamical systems, and Millennium Problems. Contents:The Golden Ratio, Fibonacci Numbers, and the "Golden" Hyperbolic Fibonacci and Lucas FunctionsThe Mathematics of Harmony and General Theory of Recursive Hyperbolic FunctionsHyperbolic and Spherical Solutions of Hilbert's Fourth Problem: The Way to the Recursive Non-Euclidean GeometriesIntroduction to the "Golden" Qualitative Theory of Dynamical Systems Based on the Mathematics of HarmonyThe Basic Stages of the Mathematical Solution to the Fine-Structure Constant Problem as a Physical Millennium ProblemAppendix: From the "Golden" Geometry to the Multiverse Readership: Advanced undergraduate and graduate students in mathematics and theoretical physics, mathematicians and scientists of different specializations interested in history of mathematics and new mathematical ideas.

Algebraic Geometry II

Author: I.R. Shafarevich
Publisher: Springer Science & Business Media
ISBN: 3540546804
Release Date: 1995-12-21
Genre: Mathematics

This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.

Gew hnliche Differentialgleichungen

Author: Vladimir I. Arnold
Publisher: Springer-Verlag
ISBN: 9783642564802
Release Date: 2013-03-11
Genre: Mathematics

nen (die fast unverändert in moderne Lehrbücher der Analysis übernommen wurde) ermöglichten ihm nach seinen eigenen Worten, "in einer halben Vier telstunde" die Flächen beliebiger Figuren zu vergleichen. Newton zeigte, daß die Koeffizienten seiner Reihen proportional zu den sukzessiven Ableitungen der Funktion sind, doch ging er darauf nicht weiter ein, da er zu Recht meinte, daß die Rechnungen in der Analysis bequemer auszuführen sind, wenn man nicht mit höheren Ableitungen arbeitet, sondern die ersten Glieder der Reihenentwicklung ausrechnet. Für Newton diente der Zusammenhang zwischen den Koeffizienten der Reihe und den Ableitungen eher dazu, die Ableitungen zu berechnen als die Reihe aufzustellen. Eine von Newtons wichtigsten Leistungen war seine Theorie des Sonnensy stems, die in den "Mathematischen Prinzipien der Naturlehre" ("Principia") ohne Verwendung der mathematischen Analysis dargestellt ist. Allgemein wird angenommen, daß Newton das allgemeine Gravitationsgesetz mit Hilfe seiner Analysis entdeckt habe. Tatsächlich hat Newton (1680) lediglich be wiesen, daß die Bahnkurven in einem Anziehungsfeld Ellipsen sind, wenn die Anziehungskraft invers proportional zum Abstandsquadrat ist: Auf das Ge setz selbst wurde Newton von Hooke (1635-1703) hingewiesen (vgl. § 8) und es scheint, daß es noch von weiteren Forschern vermutet wurde.

Zufall und Chaos

Author: David Ruelle
Publisher: Springer
ISBN: 3540577866
Release Date: 1994-08-18
Genre: Science

"Das Buch des Mathematikers und Physikers David Ruelle ist amüsant und lehrreich. Amüsant, weil es aus der seltsamen Welt der Mathematiker berichtet, und lehrreich, weil es die Grundideen schwieriger Theorien einfach darstellt... Ich habe das erfreulich kurze Buch mit großem Vergnügen gelesen und empfehle es jedem, der Spaß an spielerisch vorgetragenen genauen Überlegungen hat..." #Prof. Dr. Henning Genz, Spektrum der Wissenschaft 7/93#

Analysis II

Author: Christiane Tretter
Publisher: Springer-Verlag
ISBN: 9783034804769
Release Date: 2013-07-26
Genre: Mathematics

Das Lehrbuch ist der zweite von zwei einführenden Bänden in die Analysis. Es zeichnet sich dadurch aus, dass alle Themen der Analysis 2 kompakt zusammengefasst sind und dennoch auf typische Schwierigkeiten eingegangen wird. Beginnend mit der Topologie metrischer Räume über die Differentialrechnung von Funktionen mehrerer reeller Variablen bis zu gewöhnlichen Differentialgleichungen und Fourierreihen, enthält das Buch alle prüfungsrelevanten Inhalte. Der Stoff kann anhand von Beispielen, Gegenbeispielen und Aufgaben nachvollzogen werden.