Correspondence Analysis and Data Coding with Java and R

Author: Fionn Murtagh
Publisher: CRC Press
ISBN: 1420034944
Release Date: 2005-05-26
Genre: Mathematics

Developed by Jean-Paul Benzérci more than 30 years ago, correspondence analysis as a framework for analyzing data quickly found widespread popularity in Europe. The topicality and importance of correspondence analysis continue, and with the tremendous computing power now available and new fields of application emerging, its significance is greater than ever. Correspondence Analysis and Data Coding with Java and R clearly demonstrates why this technique remains important and in the eyes of many, unsurpassed as an analysis framework. After presenting some historical background, the author presents a theoretical overview of the mathematics and underlying algorithms of correspondence analysis and hierarchical clustering. The focus then shifts to data coding, with a survey of the widely varied possibilities correspondence analysis offers and introduction of the Java software for correspondence analysis, clustering, and interpretation tools. A chapter of case studies follows, wherein the author explores applications to areas such as shape analysis and time-evolving data. The final chapter reviews the wealth of studies on textual content as well as textual form, carried out by Benzécri and his research lab. These discussions show the importance of correspondence analysis to artificial intelligence as well as to stylometry and other fields. This book not only shows why correspondence analysis is important, but with a clear presentation replete with advice and guidance, also shows how to put this technique into practice. Downloadable software and data sets allow quick, hands-on exploration of innovative correspondence analysis applications.

R Programming for Bioinformatics

Author: Robert Gentleman
Publisher: CRC Press
ISBN: 1420063685
Release Date: 2008-07-14
Genre: Mathematics

Due to its data handling and modeling capabilities as well as its flexibility, R is becoming the most widely used software in bioinformatics. R Programming for Bioinformatics explores the programming skills needed to use this software tool for the solution of bioinformatics and computational biology problems. Drawing on the author’s first-hand experiences as an expert in R, the book begins with coverage on the general properties of the R language, several unique programming aspects of R, and object-oriented programming in R. It presents methods for data input and output as well as database interactions. The author also examines different facets of string handling and manipulations, discusses the interfacing of R with other languages, and describes how to write software packages. He concludes with a discussion on the debugging and profiling of R code. With numerous examples and exercises, this practical guide focuses on developing R programming skills in order to tackle problems encountered in bioinformatics and computational biology.

Exploratory Data Analysis with MATLAB

Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 0203483375
Release Date: 2004-11-29
Genre: Business & Economics

Exploratory data analysis (EDA) was conceived at a time when computers were not widely used, and thus computational ability was rather limited. As computational sophistication has increased, EDA has become an even more powerful process for visualizing and summarizing data before making model assumptions to generate hypotheses, encompassing larger and more complex data sets. There are many resources for those interested in the theory of EDA, but this is the first book to use MATLAB to illustrate the computational aspects of this discipline. Exploratory Data Analysis with MATLAB presents the methods of EDA from a computational perspective. The authors extensively use MATLAB code and algorithm descriptions to provide state-of-the-art techniques for finding patterns and structure in data. Addressing theory, they also incorporate many annotated references to direct readers to the more theoretical aspects of the methods. The book presents an approach using the basic functions from MATLAB and the MATLAB Statistics Toolbox, in order to be more accessible and enduring. It also contains pseudo-code to enable users of other software packages to implement the algorithms. This text places the tools needed to implement EDA theory at the fingertips of researchers, applied mathematicians, computer scientists, engineers, and statisticians by using a practical/computational approach.

Textual Data Science with R

Author: Mónica Bécue-Bertaut
Publisher: CRC Press
ISBN: 9781351816359
Release Date: 2019-03-11
Genre: Mathematics

Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by applications. The book is aimed at researchers and students in statistics, social sciences, hiistory, literature and linguistics. The book will be of interest to anyone from practitioners needing to extract information from texts to students in the field of massive data, where the ability to process textual data is becoming essential.

Correspondence Analysis

Author: Eric J. Beh
Publisher: John Wiley & Sons
ISBN: 9781118762905
Release Date: 2014-09-04
Genre: Mathematics

A comprehensive overview of the internationalisation of correspondence analysis Correspondence Analysis: Theory, Practice and New Strategies examines the key issues of correspondence analysis, and discusses the new advances that have been made over the last 20 years. The main focus of this book is to provide a comprehensive discussion of some of the key technical and practical aspects of correspondence analysis, and to demonstrate how they may be put to use. Particular attention is given to the history and mathematical links of the developments made. These links include not just those major contributions made by researchers in Europe (which is where much of the attention surrounding correspondence analysis has focused) but also the important contributions made by researchers in other parts of the world. Key features include: A comprehensive international perspective on the key developments of correspondence analysis. Discussion of correspondence analysis for nominal and ordinal categorical data. Discussion of correspondence analysis of contingency tables with varying association structures (symmetric and non-symmetric relationship between two or more categorical variables). Extensive treatment of many of the members of the correspondence analysis family for two-way, three-way and multiple contingency tables. Correspondence Analysis offers a comprehensive and detailed overview of this topic which will be of value to academics, postgraduate students and researchers wanting a better understanding of correspondence analysis. Readers interested in the historical development, internationalisation and diverse applicability of correspondence analysis will also find much to enjoy in this book.

Semisupervised learning in computational linguistics

Author: Steven P. Abney
Publisher: CRC Press
ISBN: 1584885599
Release Date: 2008
Genre: Business & Economics

Computational linguistics is a form of artificial intelligence that involves machines that understands speech/text. Semi-supervised learning methods play an increasingly important role in computational linguistics, as neither supervised nor unsupervised learning techniques are appropriate for the data involved. With a balance between theory and application approaches, "Semi-Supervised Learning in Computational Linguistics" provides an overview of these methods, focusing on applications in speech/pattern recognition, information extraction, and image processing. The book includes pseudocode to enable practical applications and critically evaluates each technique described in the text.

Design And Modeling for Computer Experiments

Author: Fang Kai Tai
Publisher: Chapman & Hall
ISBN: 1584885467
Release Date: 2006
Genre: Mathematics

Computer simulations based on mathematical models have become ubiquitous across the engineering disciplines and throughout the physical sciences. Successful use of a simulation model, however, requires careful interrogation of the model through systematic computer experiments. While specific theoretical/mathematical examinations of computer experiment design are available, those interested in applying proposed methodologies need a practical presentation and straightforward guidance on analyzing and interpreting experiment results. Written by authors with strong academic reputations and real-world practical experience, Design and Modeling for Computer Experiments is exactly the kind of treatment you need. The authors blend a sound, modern statistical approach with extensive engineering applications and clearly delineate the steps required to successfully model a problem and provide an analysis that will help find the solution. Part I introduces the design and modeling of computer experiments and the basic concepts used throughout the book. Part II focuses on the design of computer experiments. The authors present the most popular space-filling designs - like Latin hypercube sampling and its modifications and uniform design - including their definitions, properties, construction and related generating algorithms. Part III discusses the modeling of data from computer experiments. Here the authors present various modeling techniques and discuss model interpretation, including sensitivity analysis. An appendix reviews the statistics and mathematics concepts needed, and numerous examples clarify the techniques and their implementation. The complexity of real physical systems means that there is usually no simple analytic formula that sufficiently describes the phenomena. Useful both as a textbook and professional reference, this book presents the techniques you need to design and model computer experiments for practical problem solving.

Introduction to Machine Learning and Bioinformatics

Author: Sushmita Mitra
Publisher: Chapman and Hall/CRC
ISBN: STANFORD:36105131785896
Release Date: 2008-06-05
Genre: Mathematics

Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other. Examines Connections between Machine Learning & Bioinformatics The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website. Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today’s biological experiments.

p adic mathematical physics

Author: Andreĭ I︠U︡rʹevich Khrennikov
Publisher: Amer Inst of Physics
ISBN: 073540318X
Release Date: 2006
Genre: Mathematics

The subject of this conference was recent developments in p-adic mathematical physics and related areas. The field of p-Adic mathematical physics was conceived in 1987 as a result of attempts to find non-Archimedean approaches to space-time at the Planck scale as well as to strings. Since then, many applications of p-adic numbers and adeles in physics and related sciences have emerged. Some of them are p-adic and adelic string theory, p-adic and adelic quantum mechanics and quantum field theory, ultrametricity of spin glasses, biological and hierarchical systems, p-adic dynamical systems, p-adic probability theory, p-adic models of cognitive processes and cryptography, as well as p-adic and adelic cosmology.

Semantic Web

Author: Pascal Hitzler
Publisher: Springer-Verlag
ISBN: 9783540339946
Release Date: 2007-10-24
Genre: Computers

Das Buch Semantic Web – Grundlagen vermittelt als erstes deutschsprachiges Lehrbuch die Grundlagen des Semantic Web in verständlicher Weise. Es ermöglicht einen einfachen und zügigen Einstieg in Methoden und Technologien des Semantic Web und kann z.B. als solide Grundlage für die Vorbereitung und Durchführung von Vorlesungen genutzt werden. Die Autoren trennen dabei sauber zwischen einer intuitiven Hinführung zur Verwendung semantischer Technologien in der Praxis einerseits, und der Erklärung formaler und theoretischer Hintergründe andererseits. Nur für letzteres werden Grundkenntnisse in Logik vorausgesetzt, die sich bei Bedarf jedoch durch zusätzliche Lektüre und mit Hilfe eines entsprechenden Kapitels im Anhang aneignen lassen. Das Lehrbuch richtet sich primär an Studenten mit Grundkenntnissen in Informatik sowie an interessierte Praktiker welche sich im Bereich Semantic Web fortbilden möchten. Aus den Rezensionen: "... RDF, RDF-S und OWL. Diese Sprachen ... werden von den Autoren dargestellt. Bei der Darstellung ... fallen sie selten zu schwierigen Fachslang, sondern liefern eine gut nachvollziehbare Schilderung mit einfachen Beispielen, auch Übungsaufgaben runden die Kapitel ab. ... Semantic Web ist ein einfach geschriebenes und anschauliches Buch, das In die Grundkonzepte der Semantic-Web-Techniken einführt. Wer sich schnell in RDF, RDF-S und Co. einarbeiten muss und etwas Vorbildung in Logik und Algebra mitbringt, der trifft mit diesem Lehrbuch sicherlich eine gute Wahl ..." (http://www.literaturnetz.com/content/view/8742/44/)

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 9783897216501
Release Date: 2010-12-31
Genre: Computers

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Programmieren mit R

Author: Uwe Ligges
Publisher: Springer-Verlag
ISBN: 9783540267324
Release Date: 2006-03-30
Genre: Mathematics

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.