Author: Zlatko Drmac
Publisher: Springer Science & Business Media
ISBN: 9781475745320
Release Date: 2013-06-29
Genre: Computers

Proceedings of the second conference on Applied Mathematics and Scientific Computing, held June 4-9, 2001 in Dubrovnik, Croatia. The main idea of the conference was to bring together applied mathematicians both from outside academia, as well as experts from other areas (engineering, applied sciences) whose work involves advanced mathematical techniques. During the meeting there were one complete mini-course, invited presentations, contributed talks and software presentations. A mini-course Schwarz Methods for Partial Differential Equations was given by Prof Marcus Sarkis (Worcester Polytechnic Institute, USA), and invited presentations were given by active researchers from the fields of numerical linear algebra, computational fluid dynamics , matrix theory and mathematical physics (fluid mechanics and elasticity). This volume contains the mini-course and review papers by invited speakers (Part I), as well as selected contributed presentations from the field of analysis, numerical mathematics, and engineering applications.

Lecture Series on Computer and on Computational Sciences (LSCCS) aims to provide a medium for the publication of new results and developments of high-level research and education in the field of computer and computational science. In this series, only selected proceedings of conferences in all areas of computer science and computational sciences will be published. All publications are aimed at top researchers in the field and all papers in the proceedings volumes will be strictly peer reviewed. The series aims to cover the following areas of computer and computational sciences: Computer Science Hardware Computer Systems Organization Software Data Theory of Computation Mathematics of Computing Information Systems Computing Methodologies Computer Applications Computing Milieu Computational Sciences Computational Mathematics, Theoretical and Computational Physics, Theoretical and Computational Chemistry Scientific Computation Numerical and Computational Algorithms, Modeling and Simulation of Complex System, Web-Based Simulation and Computing, Grid-Based Simulation and Computing Fuzzy Logic, Hybrid Computational Methods, Data Mining and Information Retrieval and Virtual Reality, Reliable Computing, Image Processing, Computational Science and Education

Author: David M. Young
Publisher: Elsevier
ISBN: 9781483274133
Release Date: 2014-05-10
Genre: Mathematics

Iterative Solution of Large Linear Systems describes the systematic development of a substantial portion of the theory of iterative methods for solving large linear systems, with emphasis on practical techniques. The focal point of the book is an analysis of the convergence properties of the successive overrelaxation (SOR) method as applied to a linear system where the matrix is "consistently ordered". Comprised of 18 chapters, this volume begins by showing how the solution of a certain partial differential equation by finite difference methods leads to a large linear system with a sparse matrix. The next chapter reviews matrix theory and the properties of matrices, as well as several theorems of matrix theory without proof. A number of iterative methods, including the SOR method, are then considered. Convergence theorems are also given for various iterative methods under certain assumptions on the matrix A of the system. Subsequent chapters deal with the eigenvalues of the SOR method for consistently ordered matrices; the optimum relaxation factor; nonstationary linear iterative methods; and semi-iterative methods. This book will be of interest to students and practitioners in the fields of computer science and applied mathematics.

Author: Wai K. Ching
Publisher: Springer Science & Business Media
ISBN: 9781447139058
Release Date: 2013-06-29
Genre: Mathematics

An introduction to the recent advances and developments in iterative methods for solving Markovian queuing and manufacturing problems. With numerous exercises and fully-worked examples, this book is essential reading for anyone interested in the formulation and computation of queuing and manufacturing systems.

Author: James W. Demmel
Publisher: SIAM
ISBN: 9781611971446
Release Date: 1997-01-01
Genre: Algebras, Linear

Designed for use by first-year graduate students from a variety of engineering and scientific disciplines, this comprehensive textbook covers the solution of linear systems, least squares problems, eigenvalue problems, and the singular value decomposition. The author, who helped design the widely-used LAPACK and ScaLAPACK linear algebra libraries, draws on this experience to present state-of-the-art techniques for these problems, including recommendations of which algorithms to use in a variety of practical situations. Algorithms are derived in a mathematically illuminating way, including condition numbers and error bounds. Direct and iterative algorithms, suitable for dense and sparse matrices, are discussed. Algorithm design for modern computer architectures, where moving data is often more expensive than arithmetic operations, is discussed in detail, using LAPACK as an illustration. There are many numerical examples throughout the text and in the problems at the ends of chapters, most of which are written in Matlab and are freely available on the Web. Demmel discusses several current research topics, making students aware of both the lively research taking place and connections to other parts of numerical analysis, mathematics, and computer science. Some of this material is developed in questions at the end of each chapter, which are marked Easy, Medium, or Hard according to their difficulty. Some questions are straightforward, supplying proofs of lemmas used in the text. Others are more difficult theoretical or computing problems. Questions involving significant amounts of programming are marked Programming. The computing questions mainly involve Matlab programming, and others involve retrieving, using, and perhaps modifying LAPACK code from NETLIB.

The purpose of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties and to demonstrate their performances on examples and counterexamples. Within any specific class of problems, the most appropriate scientific computing algorithms are reviewed, their theoretical analyses are carried out and the expected results are verified using the MATLAB software environment. Each chapter contains examples, exercises and applications of the theory discussed to the solution of real-life problems. While addressed to senior undergraduates and graduates in engineering, mathematics, physics and computer sciences, this text is also valuable for researchers and users of scientific computing in a large variety of professional fields.

Author: Anne Greenbaum
Publisher: Princeton University Press
ISBN: 9781400842674
Release Date: 2012-04-01
Genre: Mathematics

Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online

Author: Jon H. Davis
Publisher: Birkhäuser
ISBN: 9783319433707
Release Date: 2016-12-09
Genre: Mathematics

Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.

Author: J. M. Ortega
Publisher: Elsevier
ISBN: 9781483276724
Release Date: 2014-05-10
Genre: Mathematics

Computer Science and Applied Mathematics: Iterative Solution of Nonlinear Equations in Several Variables presents a survey of the basic theoretical results about nonlinear equations in n dimensions and analysis of the major iterative methods for their numerical solution. This book discusses the gradient mappings and minimization, contractions and the continuation property, and degree of a mapping. The general iterative and minimization methods, rates of convergence, and one-step stationary and multistep methods are also elaborated. This text likewise covers the contractions and nonlinear majorants, convergence under partial ordering, and convergence of minimization methods. This publication is a good reference for specialists and readers with an extensive functional analysis background.

This book introduces the basic concepts of parallel and vector computing in the context of an introduction to numerical methods. It contains chapters on parallel and vector matrix multiplication and solution of linear systems by direct and iterative methods. It is suitable for advanced undergraduate and beginning graduate courses in computer science, applied mathematics, and engineering. Ideally, students will have access to a parallel or Vector computer, but the material can be studied profitably in any case. * Gives a modern overview of scientific computing including parallel an vector computation * Introduces numerical methods for both ordinary and partial differential equations * Has considerable discussion of both direct and iterative methods for linear systems of equations, including parallel and vector algorithms * Covers most of the main topics for a first course in numerical methods and can serve as a text for this course

Many important problems in applied sciences, mathematics, and engineering can be reduced to matrix problems. Moreover, various applications often introduce a special structure into the corresponding matrices, so that their entries can be described by a certain compact formula. Classic examples include Toeplitz matrices, Hankel matrices, Vandermonde matrices, Cauchy matrices, Pick matrices, Bezoutians, controllability and observability matrices, and others. Exploiting these and the more general structures often allows us to obtain elegant solutions to mathematical problems as well as to design more efficient practical algorithms for a variety of applied engineering problems. Structured matrices have been under close study for a long time and in quite diverse (and seemingly unrelated) areas, for example, mathematics, computer science, and engineering. Considerable progress has recently been made in all these areas, and especially in studying the relevant numerical and computational issues. In the past few years, a number of practical algorithms blending speed and accuracy have been developed. This significant growth is fully reflected in these volumes, which collect 38 papers devoted to the numerous aspects of the topic. The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numerical issues. The presentation fully illustrates the fact that the techniques of engineers, mathematicians, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices. The book is published in two volumes. The first contains articles on interpolation, system theory, signal and image processing, control theory, and spectral theory. Articles in the second volume are devoted to fast algorithms, numerical and iterative methods, and various applications.